A Takagi-Sugeno Fuzzy System for the Prediction of River Stage Dynamics

نویسندگان

  • Muhammad AQIL
  • Ichiro KITA
  • Akira YANO
  • Soichi NISHIYAMA
چکیده

An algorithm for real-time prediction of river stage dynamics using a Takagi-Sugeno fuzzy system is presented in this paper. The system is trained incrementally each time step and is used to predict onestep and multi-step ahead of river stages. The number of input variables that were considered in the analysis was determined using two statistical methods, i.e. autocorrelation and partial autocorrelation between the variables. Effectiveness of the identification technique was demonstrated by a simulation study on the river stage of the Cilalawi River in Indonesia. The numerical results of the Takagi-Sugeno fuzzy modeling method were compared with the results of a conventional linear regression model. Through inspection of the results it was found that the Takagi-Sugeno fuzzy approach was more accurate in predicting one-step and multi-step ahead of river stage dynamics than the conventional multiple linear regression approach. The Takagi-Sugeno fuzzy system was able to make a proper fuzzy rule from the training data set, which might be considered as one of the main drawbacks of the Takagi-Sugeno fuzzy system. Yet, more substantial improvement certainly should be pursued through further research to improve the forecast results at greater lead times. Discipline: Agricultural engineering Additional key words: linear regression, multi-step ahead, time series

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New High-order Takagi-Sugeno Fuzzy Model Based on Deformed Linear Models

Amongst possible choices for identifying complicated processes for prediction, simulation, and approximation applications, high-order Takagi-Sugeno (TS) fuzzy models are fitting tools. Although they can construct models with rather high complexity, they are not as interpretable as first-order TS fuzzy models. In this paper, we first propose to use Deformed Linear Models (DLMs) in consequence pa...

متن کامل

Identification of Cement Rotary Kiln in Noisy Condition using Takagi-Sugeno Neuro-fuzzy System

Cement rotary kiln is the main part of cement production process that have always attracted many researchers’ attention. But this complex nonlinear system has not been modeled efficiently which can make an appropriate performance specially in noisy condition. In this paper Takagi-Sugeno neuro-fuzzy system (TSNFS) is used for identification of cement rotary kiln, and gradient descent (GD) algori...

متن کامل

Design of nonlinear parity approach to fault detection and identification based on Takagi-Sugeno fuzzy model and unknown input observer in nonlinear systems

In this study, a novel fault detection scheme is developed for a class of nonlinear system in the presence of sensor noise. A nonlinear Takagi-Sugeno fuzzy model is implemented to create multiple models. While the T-S fuzzy model is used for only the nonlinear distribution matrix of the fault and measurement signals, a larger category of nonlinear systems is considered. Next, a mapping to decou...

متن کامل

Admissibility analysis for discrete-time singular systems with time-varying delays by adopting the state-space Takagi-Sugeno fuzzy model

This paper is pertained with the problem of admissibility analysis of uncertain discrete-time nonlinear singular systems by adopting the state-space Takagi-Sugeno fuzzy model with time-delays and norm-bounded parameter uncertainties. Lyapunov Krasovskii functionals are constructed to obtain delay-dependent stability condition in terms of linear matrix inequalities, which is dependent on the low...

متن کامل

Design of robust fuzzy Sliding-Mode control for a class of the Takagi-Sugeno uncertain fuzzy systems using scalar Sign function

This article presents a fuzzy sliding-mode control scheme for a class of Takagi-Sugeno (T-S) fuzzy which are subject to norm-bounded uncertainties in each subsystem. The proposed stabilization method can be adopted to explore T-S uncertain fuzzy systems (TSUFS) with various local control inputs. Firstly, a new design is proposed to transform TSUFS into sliding-mode dynamic systems.In addi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999